Constructing the Reals

Matthew Hanna

May 13, 2019

Theorem 1. There exists an order field \mathbb{R} that has the least upper bound property. Moreover, $\mathbb{Q} \subset \mathbb{R}$ in the sense that \mathbb{R} contains \mathbb{Q} as an ordered subfield.

What the second statement means is that the operations that \mathbb{Q} enjoys stay invariant when \mathbb{Q} is extended to \mathbb{R} . For example, if $x,y\in\mathbb{Q}$ and $x+y\in\mathbb{Q}$. Since $\mathbb{Q}\subset\mathbb{R}$, we have $x,y\in\mathbb{R}$ and $x+y\in\mathbb{R}$ is exactly the same sum as defined in \mathbb{Q} .

Proof. We prove the existence of \mathbb{R} by explicitly constructing it. We divide this construction into several steps.

Step 1: The members of \mathbb{R} will be certain subsets of \mathbb{Q} which we give the name *cuts*. A cut must satisfy the following definitions.

- 1. $\alpha \neq \mathbb{Q}$ and $\alpha \neq \emptyset$.
- 2. If $p \in \alpha$ and q < p, then $q \in \alpha$. This gives us a useful relation between α , some element guaranteed to be in α , and an arbitrary element of \mathbb{Q} . That is, if we know p and α are related by the inclusion relation and q and p are related by the order relation that q < p, then we know that q and α are related by the inclusion relation as well.
- 3. If $p \in \alpha$, then there exists some $r \in \mathbb{Q}$ such that p < r and $r \in \alpha$. This says that α contains no maximal element, analogous to $A = \{p \in \mathbb{Q} \mid p^2 < 2\}$ as discussed earlier.

The letters $p, q, r \dots$ denote the rational numbers where $\alpha, \beta, \gamma \dots$ represent cuts.

Note that (3) says the cuts in have no maximal element. (2) carries with it the following two implications.

If $p \in \alpha$ and $q \notin \alpha$, then p < q.

If $r \notin \alpha$ and r < s, then $s \notin \alpha$.

Step 2: To show that \mathbb{R} is an ordered set.

We define $\alpha < \beta$ to mean $\alpha \subset \beta$. Since whenever $\alpha \subset \beta$ and $\beta \subset \gamma$, we have $\alpha \subset \gamma$. Translated to our language of order relation, whenever $\alpha < \beta$ and $\beta < \gamma$, we have $\alpha < \gamma$. It is obvious that **at most one** of the following be true

$$\alpha < \beta$$
 $\alpha = \beta$ $\alpha > \beta$

This is because if $\alpha \subset \beta$ then it is not the case that $\beta \subset \alpha$. If neither is the case, then we say that $\alpha = \beta$. To show that one must be necessarily true, assume that it is not the case $\alpha < \beta$ or $\alpha = \beta$. Then it is not the case that $\alpha \subset \beta$. This means that there is some $p \in \alpha$ for which $p \notin \beta$. This means by p > b for any $b \in \beta$. This means $b \in \alpha$. Then, $\beta \subset \alpha$, which is $\beta < \alpha$. We have now established that $\mathbb R$ is an ordered set.

Step 3: To show that \mathbb{R} has the least upper bound property.

To prove this, let A be a nonempty subset of \mathbb{R} that is bounded above. What we mean is that there is some $\beta \in \mathbb{R}$ that contains every element of A. Now suppose that $\gamma = \bigcup_{\alpha \in A} \alpha$. This means that $p \in \alpha$ if and only $p \in \gamma$. I claim that $\gamma = \sup(A)$ and that $\gamma \in \mathbb{R}$.

Since A is non-empty, there must some $\alpha_1 \in A$. $\alpha_1 \neq \emptyset$ and since $\alpha_1 \subset \gamma$, $\gamma \neq \emptyset$. Since every $\alpha \in A$ satisfies the property that $\alpha \subset \beta$, since β is an upper bound. It follows that $\gamma \subset \beta$ since $\gamma = \bigcup_{\alpha \in A} \alpha$. Since $\beta \neq \mathbb{Q}$, it follows

that $\gamma \neq \mathbb{Q}$. Hence, γ satisfies condition (1) laid out in the beginning of this proof. Pick some $p \in \gamma$. Since, $\gamma = \bigcup_{\alpha \in A} \alpha$, there must be some α_p such

that $p \in \alpha_p$. Pick some $q \in \mathbb{Q}$ such that q < p. By condition 2, it follows that $q \in \alpha_p$. Since $\gamma = \bigcup_{\alpha \in A} \alpha$, it must follow that $q \in \gamma$. Since q was chosen

arbitrarily, it follows γ also satisfies condition 2. Now in the same α_p , pick some r > p, whose existence is guaranteed by condition 3. It follows that $r \in \gamma$. As p maybe chosen at random without changing this result, it follows that γ satisfies condition 3. Since γ satisfies all three conditions required to be an element of \mathbb{R} , we may state that $\gamma \in \mathbb{R}$.

It is obvious that $\alpha \leq \gamma$, this means that γ is an upper bound. Suppose $\delta < \gamma$, then there is some $s \in \gamma$ such that $s \notin \delta$. Since γ is precisely the union of all $\alpha \in A$, there is some α_s , which $s \in \alpha_s$ and since $s \notin \delta$, it is not the case that $s < \delta$ or $s = \delta$, we then apply the result from set 2, to obtain the

fact $\delta < s$. Hence, δ is not an upper bound. Since the only condition that forced δ to not be an upper bound was that $\delta < \gamma$, it follows that $\gamma = \sup(A)$.

Step 4: If α and β are both elements of \mathbb{R} , then we define $\alpha + \beta$ to be the set of all sums a + b where $a \in \alpha$ and $b \in \beta$.

Define 0^* to be the set of all negative rational numbers. It is clear that 0^* satisfies the 3 conditions required to be a cut. Namely, $0^* \neq \emptyset$ since we know there is at least one element in 0^* . Also, we have that $0^* \neq \mathbb{Q}$ since we may find at least one rational (more specifically, any positive rational) which is not an element of \mathbb{Q} Next, suppose $p \in 0^*$ and assume q < p. Then, we have the case that q is also a negative rational. Hence, condition 2 is satisfied. Now, pick $p \in 0^*$. Now, pick $r = \frac{p}{2}$. It is known that $r \in 0^*$ and that r > p. Hence, 0^* satisfies condition 3. And, with that, 0^* is a cut. We will now prove that the addition of elements of \mathbb{R} defined above satisfies the conditions need to be considered addition.

- 1. First, we must show closure, which is: whenever $\alpha, \beta \in \mathbb{R}$, it follows that $\alpha + \beta \in \mathbb{R}$. In other words, we are required to that $\alpha + \beta$ is also a cut.
 - (a) Since α and β are both non-empty, it follows that the set $\alpha + \beta$ is also non-empty. Pick $r, s \in \mathbb{Q}$ so that r > a for any $a \in \alpha$ and s > b for any $b \in \beta$. It follows that r + s > a + b for any $a + b \in \alpha + \beta$. Hence, $\alpha + \beta$ is bounded above, therefore $\alpha + \beta \neq \mathbb{Q}$ Therefore $\alpha + \beta$ has property (1).
 - (b) Pick $p \in \alpha + \beta$ Then, it follows, by definition, that p = r + s for some $r \in \alpha$ and $s \in \beta$. Now pick q < p. Since p s = r, we have q s < r. Because α satisfies property (2), $q s \in \alpha$. (And, by a similar argument, we have the result that $q r \in \beta$.) Since $(q s) \in \alpha$ and $s \in \beta$, it follows that $(q s) + s \in \alpha + \beta$. Hence, $\alpha + \beta$ satisfies condition 2.
 - (c) Consider some $p = r + s \in \alpha + \beta$ for some $r \in \alpha$ and $s \in \beta$. Since α and β each satisfy condition 3, it follows that there some $r' \in \alpha$ and some $s' \in \beta$ for which r' > r and s' > s. Since $r' \in \alpha$ and $s' \in \beta$, it follows that $r' + s' \in \alpha + \beta$ and that r' + s' > r + s. Hence, $\alpha + \beta$ satisfies condition 3.
- 2. We now prove that this addition is commutative. Assume $\alpha + \beta$. Then, by definition, $\alpha + \beta = \{r + s \mid r \in \alpha, s \in \beta\}$ and we know that $\beta + \alpha = \{s + r \mid r \in \alpha, s \in \beta\}$ But since, $r, s \in \mathbb{Q}$,

we know that r + s = s + r. so $\alpha + \beta = \{s + r \mid r \in \alpha, s \in \beta\}$ Since $\alpha + \beta$ and $\beta + \alpha$ are the same set in set builder notation, we know that $\alpha + \beta = \beta + \alpha$, as was required.

- 3. We prove that this addition is associative. We pick $\alpha, \beta, \gamma \in \mathbb{R}$. Consider $(\alpha + \beta) + \gamma$ In the language of set theory, this is $(\alpha + \beta) + \gamma = \{(a + b) + c \mid a \in \alpha, b \in \beta, c \in \gamma\}$ Since $a, b, c \in \mathbb{Q}$, we have $(\alpha + \beta) + \gamma = \{a + (b + c) \mid a \in \alpha, b \in \beta, c \in \gamma\}$ since addition in \mathbb{Q} is associative. Converting to the right hand side into the language of this proof, we have $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$. This is what we wanted to show.
- 4. If $r \in \alpha$ and $s \in 0^*$, then we know that r + s < r since 0^* is the set of all negative rationals. Since we have proved closure under addition of cuts and by condition 2 of this proof, we know that $\alpha + 0^* \subseteq \alpha$. Now, pick $p \in \alpha$ and by condition 3, we know that we may pick some $p \in \alpha$ such that r > p. Therefore, $p r \in 0^*$. Which yields the result that $p = r + (p r) \in \alpha + 0^*$. Hence, $\alpha \subseteq \alpha + 0^*$. By the double inclusion argument, we have $\alpha = \alpha + 0^*$. Hence, we have shown the existence of an additive identity, namely 0^* .
- 5. Let $\alpha \in \mathbb{R}^+$ be a fixed cut. Now let β be the set of all $p \in \mathbb{Q}$ with the following property: There exists a rational r > 0 such that $-p r \notin \alpha$. For example, let α be the cut associated with $\sqrt{2}$. Consider p = -2, it is very easy to see that there is some rational r, for example r = 0.1 such that -(-2) 0.01 is not in the cut associated with $\sqrt{2}$. We must show that β is a cut and that $\alpha + \beta = 0^*$.

Suppose $s \notin \alpha$ such an s is guaranteed to existed by the condition that $\alpha \neq \mathbb{Q}$. We intuitively think of this as $s > \alpha$. Now, consider p = -s - 1 and pick r = 1. It is easy to see that $-p - 1 \notin \alpha$ since -p - 1 = -(-s - 1) - 1 = s + 1 - 1 = s. Therefore $p \in \beta$. Since existence of s is guaranteed, this construction of p based on s is also guaranteed. Hence, β is not empty. If $q \in \alpha$, then, by the fact that \mathbb{R} is ordered, we have $-q \notin \beta$. Hence, $\beta \neq \mathbb{Q}$. Thus, β satisfies condition 1.

Now pick $p \in \beta$ and choose r accordingly so that $-p - r \notin \alpha$. If q < p, it easily follows that -q - r > -p - r. Therefore, $-q - r \notin \alpha$. Hence $q \in \beta$. Condition 2 is satisfied.

Now, let $t=p+\frac{r}{2}$. It easily follows that t>p. Then $-t-\frac{r}{2}=-(p+\frac{r}{2})-\frac{r}{2}=-p-r\notin\alpha$. Hence, $t\in\beta$. Condition 3 is satisfied and with that we have shown that β is a cut.

Let $r \in \alpha$ and $s \in \beta$. Then, $-s \notin \alpha$. Therefore, r < -s. Hence, r + s < 0. This shows that $r + s \subseteq 0^*$. To prove the reverse inclusion, pick $v \in 0^*$ and $w = -\frac{v}{2}$. Since, v is a negative rational, by definition, w > 0. There is some $n \in \mathbb{Z}$ for which $nw \in \alpha$ but $(n+1)w \notin \alpha$. It is easy quite easy to argue why. Pick $a_{\epsilon} \in \alpha$ so that $d(a_{\epsilon}, \alpha) < \epsilon$ for positive rational ϵ . We may then choose n to be the floor of $\frac{a_{\epsilon}}{w}$ and as $\epsilon \to 0$, it follows that n is the desire integer as above. Now, let p = -(n+2)w. Since $-p - w = (n+2)w - w = (n+1)w \notin \alpha$, $p \in \beta$. We also have the added bonus that:

$$p + nw \in \beta + \alpha$$

$$p + nw = -(n+2)w + nw$$

$$-(n+2)w + nw = (n+2)\frac{v}{2} - n\frac{v}{2}$$

 $p + nw = v \in \alpha + \beta$

Hence, $0^* \subseteq \alpha + \beta$. We have shown that $\alpha + \beta = 0^*$.

Step 5: We have prove that the addition of cuts as defined earlier does satisfy the axioms for something to be considered addition in the traditional sense. We get the following truths about \mathbb{R} for free.

- 1. If $\alpha + \beta = \alpha + \gamma$, then $\beta = \gamma$.
- 2. If $\alpha + \beta = \alpha$, then $\beta = 0^*$
- 3. If $\alpha + \beta = 0^*$, then $\beta = -\alpha$
- 4. $-(-\alpha) = \alpha$

All of which hold for any $\alpha, \beta, \gamma \in \mathbb{R}$. By the clever construction of \mathbb{R} , we may also prove other intuitive theorems which do not strictly follow from the axioms for addition. Consider $\beta, \gamma \in \mathbb{R}$ in which $\beta < \gamma$. By definition, this means that $\beta \subset \gamma$. And, by how addition is defined, it follows that $\alpha + \beta \subset \alpha + \gamma$. This implies that $\alpha + \beta < \alpha + \gamma$. Now consider $\alpha > 0^*$. By the result in step 4, we know there exists some $-\alpha \in \mathbb{R}$ in which $\alpha + -\alpha = 0$. Therefore, we have $\alpha + -\alpha > 0^* - \alpha$. We rewrite the LHS as 0^* and we may rewrite RHS as $-\alpha$ because we have established that 0^* is the additive identity for \mathbb{R} . So we have the result that $0^* > -\alpha$.