2 Analysis Proofs

Matthew Hanna

April 15, 2019

Theorem 1. Let S be a nonempty subset of \mathbb{R} that is bounded below, then S has an infimum.

Proof. Let $T = \{b \in \mathbb{R} : b \leq a, \forall a \in S\}$, whose existence is guaranteed by the condition that S is a non-empty subset of \mathbb{R} which is bounded below. By these same conditions, we also know that T is bounded above. Then, we apply the completeness property of \mathbb{R} to obtain the fact that T has a supremum, which we may call m. Now we arbitrarily choose $y \in S$. We, then, know that y is an upper bound for T and, since m is the supremum of T we know that $m \leq y$. We then, know that m is a lower bound for S. Since m is still an upper bound for T, we know that every $x \in T$ has the property that $x \leq m$. We now that m is the infimum for S by the facts that for any $y \in S$, $m \leq y$ and for any $x \in T$, $x \leq m$.

Theorem 2. Given any $x \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that x < n Similarly, there is an $l \in \mathbb{N}$ such that -l < x.

Proof. Suppose the contrary, namely that there exists an $x \in R$ such that there is no $n \in \mathbb{N}$ for which the inequality x < n is true. Hence, we have that for all $n \in \mathbb{N}$, with $n \le x$. Therefore, x is an upper bound for \mathbb{N} Hence, by the Completeness Property, we have that \mathbb{N} has a supremum, which we may call M. We then know that M-1 is not an upper bound for \mathbb{N} . Therefore, there exists some $n_0 \in \mathbb{N}$ such that $M-1 < n_0$. But since $n_0 + 1$ is also an element of \mathbb{N} , we know that $M < n_0 + 1$. Hence, M is not an upper bound. This contradiction establishes the theorem.

Corollary 2.1. For any $x \in \mathbb{R}$, we have that there exists $m, n \in \mathbb{N}$ such that $x \in (-m, n)$.